Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x-3+x^{2}>0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}+2x-3>0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x-3=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te 2 mō te b, me te -3 mō te c i te ture pūrua.
x=\frac{-2±2\sqrt{7}}{4}
Mahia ngā tātaitai.
x=\frac{\sqrt{7}-1}{2} x=\frac{-\sqrt{7}-1}{2}
Whakaotia te whārite x=\frac{-2±2\sqrt{7}}{4} ina he tōrunga te ±, ina he tōraro te ±.
2\left(x-\frac{\sqrt{7}-1}{2}\right)\left(x-\frac{-\sqrt{7}-1}{2}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{7}-1}{2}<0 x-\frac{-\sqrt{7}-1}{2}<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{\sqrt{7}-1}{2} me te x-\frac{-\sqrt{7}-1}{2}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{\sqrt{7}-1}{2} me te x-\frac{-\sqrt{7}-1}{2}.
x<\frac{-\sqrt{7}-1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko x<\frac{-\sqrt{7}-1}{2}.
x-\frac{-\sqrt{7}-1}{2}>0 x-\frac{\sqrt{7}-1}{2}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{\sqrt{7}-1}{2} me te x-\frac{-\sqrt{7}-1}{2}.
x>\frac{\sqrt{7}-1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{\sqrt{7}-1}{2}.
x<\frac{-\sqrt{7}-1}{2}\text{; }x>\frac{\sqrt{7}-1}{2}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.