Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x-0=0
Whakareatia te 0 ki te 44, ka 0.
x^{2}+2x=0
Whakaraupapatia anō ngā kīanga tau.
x\left(x+2\right)=0
Tauwehea te x.
x=0 x=-2
Hei kimi otinga whārite, me whakaoti te x=0 me te x+2=0.
x^{2}+2x-0=0
Whakareatia te 0 ki te 44, ka 0.
x^{2}+2x=0
Whakaraupapatia anō ngā kīanga tau.
x=\frac{-2±\sqrt{2^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2}
Tuhia te pūtakerua o te 2^{2}.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{-2±2}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2.
x=0
Whakawehe 0 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-2±2}{2} ina he tango te ±. Tango 2 mai i -2.
x=-2
Whakawehe -4 ki te 2.
x=0 x=-2
Kua oti te whārite te whakatau.
x^{2}+2x-0=0
Whakareatia te 0 ki te 44, ka 0.
x^{2}+2x=0
Whakaraupapatia anō ngā kīanga tau.
x^{2}+2x+1^{2}=1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=1
Pūrua 1.
\left(x+1\right)^{2}=1
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=1 x+1=-1
Whakarūnātia.
x=0 x=-2
Me tango 1 mai i ngā taha e rua o te whārite.