Whakaoti mō x
x=\sqrt{105}+10\approx 20.246950766
x=10-\sqrt{105}\approx -0.246950766
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x+4-22x=9
Tangohia te 22x mai i ngā taha e rua.
x^{2}-20x+4=9
Pahekotia te 2x me -22x, ka -20x.
x^{2}-20x+4-9=0
Tangohia te 9 mai i ngā taha e rua.
x^{2}-20x-5=0
Tangohia te 9 i te 4, ka -5.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -20 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-5\right)}}{2}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-\left(-20\right)±\sqrt{420}}{2}
Tāpiri 400 ki te 20.
x=\frac{-\left(-20\right)±2\sqrt{105}}{2}
Tuhia te pūtakerua o te 420.
x=\frac{20±2\sqrt{105}}{2}
Ko te tauaro o -20 ko 20.
x=\frac{2\sqrt{105}+20}{2}
Nā, me whakaoti te whārite x=\frac{20±2\sqrt{105}}{2} ina he tāpiri te ±. Tāpiri 20 ki te 2\sqrt{105}.
x=\sqrt{105}+10
Whakawehe 20+2\sqrt{105} ki te 2.
x=\frac{20-2\sqrt{105}}{2}
Nā, me whakaoti te whārite x=\frac{20±2\sqrt{105}}{2} ina he tango te ±. Tango 2\sqrt{105} mai i 20.
x=10-\sqrt{105}
Whakawehe 20-2\sqrt{105} ki te 2.
x=\sqrt{105}+10 x=10-\sqrt{105}
Kua oti te whārite te whakatau.
x^{2}+2x+4-22x=9
Tangohia te 22x mai i ngā taha e rua.
x^{2}-20x+4=9
Pahekotia te 2x me -22x, ka -20x.
x^{2}-20x=9-4
Tangohia te 4 mai i ngā taha e rua.
x^{2}-20x=5
Tangohia te 4 i te 9, ka 5.
x^{2}-20x+\left(-10\right)^{2}=5+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-20x+100=5+100
Pūrua -10.
x^{2}-20x+100=105
Tāpiri 5 ki te 100.
\left(x-10\right)^{2}=105
Tauwehea x^{2}-20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{105}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-10=\sqrt{105} x-10=-\sqrt{105}
Whakarūnātia.
x=\sqrt{105}+10 x=10-\sqrt{105}
Me tāpiri 10 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}