Aromātai
x^{2}+2x-19
Tauwehe
\left(x-\left(-2\sqrt{5}-1\right)\right)\left(x-\left(2\sqrt{5}-1\right)\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x+1-20
Whakareatia te 5 ki te 4, ka 20.
x^{2}+2x-19
Tangohia te 20 i te 1, ka -19.
factor(x^{2}+2x+1-20)
Whakareatia te 5 ki te 4, ka 20.
factor(x^{2}+2x-19)
Tangohia te 20 i te 1, ka -19.
x^{2}+2x-19=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-19\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{4-4\left(-19\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+76}}{2}
Whakareatia -4 ki te -19.
x=\frac{-2±\sqrt{80}}{2}
Tāpiri 4 ki te 76.
x=\frac{-2±4\sqrt{5}}{2}
Tuhia te pūtakerua o te 80.
x=\frac{4\sqrt{5}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±4\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 4\sqrt{5}.
x=2\sqrt{5}-1
Whakawehe -2+4\sqrt{5} ki te 2.
x=\frac{-4\sqrt{5}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±4\sqrt{5}}{2} ina he tango te ±. Tango 4\sqrt{5} mai i -2.
x=-2\sqrt{5}-1
Whakawehe -2-4\sqrt{5} ki te 2.
x^{2}+2x-19=\left(x-\left(2\sqrt{5}-1\right)\right)\left(x-\left(-2\sqrt{5}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1+2\sqrt{5} mō te x_{1} me te -1-2\sqrt{5} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}