Whakaoti mō x
x=-20
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=25 ab=100
Hei whakaoti i te whārite, whakatauwehea te x^{2}+25x+100 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,100 2,50 4,25 5,20 10,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Tātaihia te tapeke mō ia takirua.
a=5 b=20
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(x+5\right)\left(x+20\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-5 x=-20
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+20=0.
a+b=25 ab=1\times 100=100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+100. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,100 2,50 4,25 5,20 10,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Tātaihia te tapeke mō ia takirua.
a=5 b=20
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(x^{2}+5x\right)+\left(20x+100\right)
Tuhia anō te x^{2}+25x+100 hei \left(x^{2}+5x\right)+\left(20x+100\right).
x\left(x+5\right)+20\left(x+5\right)
Tauwehea te x i te tuatahi me te 20 i te rōpū tuarua.
\left(x+5\right)\left(x+20\right)
Whakatauwehea atu te kīanga pātahi x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-5 x=-20
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+20=0.
x^{2}+25x+100=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{25^{2}-4\times 100}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 25 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 100}}{2}
Pūrua 25.
x=\frac{-25±\sqrt{625-400}}{2}
Whakareatia -4 ki te 100.
x=\frac{-25±\sqrt{225}}{2}
Tāpiri 625 ki te -400.
x=\frac{-25±15}{2}
Tuhia te pūtakerua o te 225.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-25±15}{2} ina he tāpiri te ±. Tāpiri -25 ki te 15.
x=-5
Whakawehe -10 ki te 2.
x=-\frac{40}{2}
Nā, me whakaoti te whārite x=\frac{-25±15}{2} ina he tango te ±. Tango 15 mai i -25.
x=-20
Whakawehe -40 ki te 2.
x=-5 x=-20
Kua oti te whārite te whakatau.
x^{2}+25x+100=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+25x+100-100=-100
Me tango 100 mai i ngā taha e rua o te whārite.
x^{2}+25x=-100
Mā te tango i te 100 i a ia ake anō ka toe ko te 0.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-100+\left(\frac{25}{2}\right)^{2}
Whakawehea te 25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{2}. Nā, tāpiria te pūrua o te \frac{25}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+25x+\frac{625}{4}=-100+\frac{625}{4}
Pūruatia \frac{25}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+25x+\frac{625}{4}=\frac{225}{4}
Tāpiri -100 ki te \frac{625}{4}.
\left(x+\frac{25}{2}\right)^{2}=\frac{225}{4}
Tauwehea x^{2}+25x+\frac{625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{2}=\frac{15}{2} x+\frac{25}{2}=-\frac{15}{2}
Whakarūnātia.
x=-5 x=-20
Me tango \frac{25}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}