Whakaoti mō x
x=38
x=68
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2584-106x=0
Tangohia te 106x mai i ngā taha e rua.
x^{2}-106x+2584=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-106\right)±\sqrt{\left(-106\right)^{2}-4\times 2584}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -106 mō b, me 2584 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-106\right)±\sqrt{11236-4\times 2584}}{2}
Pūrua -106.
x=\frac{-\left(-106\right)±\sqrt{11236-10336}}{2}
Whakareatia -4 ki te 2584.
x=\frac{-\left(-106\right)±\sqrt{900}}{2}
Tāpiri 11236 ki te -10336.
x=\frac{-\left(-106\right)±30}{2}
Tuhia te pūtakerua o te 900.
x=\frac{106±30}{2}
Ko te tauaro o -106 ko 106.
x=\frac{136}{2}
Nā, me whakaoti te whārite x=\frac{106±30}{2} ina he tāpiri te ±. Tāpiri 106 ki te 30.
x=68
Whakawehe 136 ki te 2.
x=\frac{76}{2}
Nā, me whakaoti te whārite x=\frac{106±30}{2} ina he tango te ±. Tango 30 mai i 106.
x=38
Whakawehe 76 ki te 2.
x=68 x=38
Kua oti te whārite te whakatau.
x^{2}+2584-106x=0
Tangohia te 106x mai i ngā taha e rua.
x^{2}-106x=-2584
Tangohia te 2584 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-106x+\left(-53\right)^{2}=-2584+\left(-53\right)^{2}
Whakawehea te -106, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -53. Nā, tāpiria te pūrua o te -53 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-106x+2809=-2584+2809
Pūrua -53.
x^{2}-106x+2809=225
Tāpiri -2584 ki te 2809.
\left(x-53\right)^{2}=225
Tauwehea x^{2}-106x+2809. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-53\right)^{2}}=\sqrt{225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-53=15 x-53=-15
Whakarūnātia.
x=68 x=38
Me tāpiri 53 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}