Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
Tuhia te \frac{\sqrt{2}}{2}x hei hautanga kotahi.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Kia whakarewa i te \frac{\sqrt{2}x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
Whakareatia te 4 ki te 2, ka 8.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakarohaina te \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakawehea te 2x^{2} ki te 4, kia riro ko \frac{1}{2}x^{2}.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
x^{2}+x^{2}-4x\times 2+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+x^{2}-8x+16=8
Whakareatia te -4 ki te 2, ka -8.
2x^{2}-8x+16=8
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-8x+16-8=0
Tangohia te 8 mai i ngā taha e rua.
2x^{2}-8x+8=0
Tangohia te 8 i te 16, ka 8.
x^{2}-4x+4=0
Whakawehea ngā taha e rua ki te 2.
a+b=-4 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Tuhia anō te x^{2}-4x+4 hei \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-2\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=2
Hei kimi i te otinga whārite, whakaotia te x-2=0.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
Tuhia te \frac{\sqrt{2}}{2}x hei hautanga kotahi.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Kia whakarewa i te \frac{\sqrt{2}x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
Whakareatia te 4 ki te 2, ka 8.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakarohaina te \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakawehea te 2x^{2} ki te 4, kia riro ko \frac{1}{2}x^{2}.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
x^{2}+x^{2}-4x\times 2+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+x^{2}-8x+16=8
Whakareatia te -4 ki te 2, ka -8.
2x^{2}-8x+16=8
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-8x+16-8=0
Tangohia te 8 mai i ngā taha e rua.
2x^{2}-8x+8=0
Tangohia te 8 i te 16, ka 8.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -8 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
Whakareatia -8 ki te 8.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
Tāpiri 64 ki te -64.
x=-\frac{-8}{2\times 2}
Tuhia te pūtakerua o te 0.
x=\frac{8}{2\times 2}
Ko te tauaro o -8 ko 8.
x=\frac{8}{4}
Whakareatia 2 ki te 2.
x=2
Whakawehe 8 ki te 4.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
Tuhia te \frac{\sqrt{2}}{2}x hei hautanga kotahi.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Kia whakarewa i te \frac{\sqrt{2}x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
Whakareatia te 4 ki te 2, ka 8.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakarohaina te \left(\sqrt{2}x\right)^{2}.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakawehea te 2x^{2} ki te 4, kia riro ko \frac{1}{2}x^{2}.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
x^{2}+x^{2}-4x\times 2+16=8
Ko te pūrua o \sqrt{2} ko 2.
x^{2}+x^{2}-8x+16=8
Whakareatia te -4 ki te 2, ka -8.
2x^{2}-8x+16=8
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-8x=8-16
Tangohia te 16 mai i ngā taha e rua.
2x^{2}-8x=-8
Tangohia te 16 i te 8, ka -8.
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-4x=-\frac{8}{2}
Whakawehe -8 ki te 2.
x^{2}-4x=-4
Whakawehe -8 ki te 2.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-4+4
Pūrua -2.
x^{2}-4x+4=0
Tāpiri -4 ki te 4.
\left(x-2\right)^{2}=0
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=0 x-2=0
Whakarūnātia.
x=2 x=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=2
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}