Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+1x+2x=5
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+3x=5
Pahekotia te 1x me 2x, ka 3x.
2x^{2}+3x-5=0
Tangohia te 5 mai i ngā taha e rua.
a+b=3 ab=2\left(-5\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Tuhia anō te 2x^{2}+3x-5 hei \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Tauwehea te 2x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-1\right)\left(2x+5\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 2x+5=0.
2x^{2}+1x+2x=5
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+3x=5
Pahekotia te 1x me 2x, ka 3x.
2x^{2}+3x-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 3 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Whakareatia -8 ki te -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Tāpiri 9 ki te 40.
x=\frac{-3±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{-3±7}{4}
Whakareatia 2 ki te 2.
x=\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{-3±7}{4} ina he tāpiri te ±. Tāpiri -3 ki te 7.
x=1
Whakawehe 4 ki te 4.
x=-\frac{10}{4}
Nā, me whakaoti te whārite x=\frac{-3±7}{4} ina he tango te ±. Tango 7 mai i -3.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{5}{2}
Kua oti te whārite te whakatau.
2x^{2}+1x+2x=5
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+3x=5
Pahekotia te 1x me 2x, ka 3x.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Tāpiri \frac{5}{2} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Whakarūnātia.
x=1 x=-\frac{5}{2}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.