Whakaoti mō x
x=4\sqrt{11}-9\approx 4.266499161
x=-4\sqrt{11}-9\approx -22.266499161
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+18x-95=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-95\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me -95 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-95\right)}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324+380}}{2}
Whakareatia -4 ki te -95.
x=\frac{-18±\sqrt{704}}{2}
Tāpiri 324 ki te 380.
x=\frac{-18±8\sqrt{11}}{2}
Tuhia te pūtakerua o te 704.
x=\frac{8\sqrt{11}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±8\sqrt{11}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 8\sqrt{11}.
x=4\sqrt{11}-9
Whakawehe -18+8\sqrt{11} ki te 2.
x=\frac{-8\sqrt{11}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±8\sqrt{11}}{2} ina he tango te ±. Tango 8\sqrt{11} mai i -18.
x=-4\sqrt{11}-9
Whakawehe -18-8\sqrt{11} ki te 2.
x=4\sqrt{11}-9 x=-4\sqrt{11}-9
Kua oti te whārite te whakatau.
x^{2}+18x-95=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+18x-95-\left(-95\right)=-\left(-95\right)
Me tāpiri 95 ki ngā taha e rua o te whārite.
x^{2}+18x=-\left(-95\right)
Mā te tango i te -95 i a ia ake anō ka toe ko te 0.
x^{2}+18x=95
Tango -95 mai i 0.
x^{2}+18x+9^{2}=95+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=95+81
Pūrua 9.
x^{2}+18x+81=176
Tāpiri 95 ki te 81.
\left(x+9\right)^{2}=176
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{176}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=4\sqrt{11} x+9=-4\sqrt{11}
Whakarūnātia.
x=4\sqrt{11}-9 x=-4\sqrt{11}-9
Me tango 9 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}