Whakaoti mō x
x=\frac{3\sqrt{3}}{2}-2\approx 0.598076211
x=-\frac{3\sqrt{3}}{2}-2\approx -4.598076211
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+16x+64-75=-3x^{2}
Tangohia te 75 mai i ngā taha e rua.
x^{2}+16x-11=-3x^{2}
Tangohia te 75 i te 64, ka -11.
x^{2}+16x-11+3x^{2}=0
Me tāpiri te 3x^{2} ki ngā taha e rua.
4x^{2}+16x-11=0
Pahekotia te x^{2} me 3x^{2}, ka 4x^{2}.
x=\frac{-16±\sqrt{16^{2}-4\times 4\left(-11\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 16 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 4\left(-11\right)}}{2\times 4}
Pūrua 16.
x=\frac{-16±\sqrt{256-16\left(-11\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-16±\sqrt{256+176}}{2\times 4}
Whakareatia -16 ki te -11.
x=\frac{-16±\sqrt{432}}{2\times 4}
Tāpiri 256 ki te 176.
x=\frac{-16±12\sqrt{3}}{2\times 4}
Tuhia te pūtakerua o te 432.
x=\frac{-16±12\sqrt{3}}{8}
Whakareatia 2 ki te 4.
x=\frac{12\sqrt{3}-16}{8}
Nā, me whakaoti te whārite x=\frac{-16±12\sqrt{3}}{8} ina he tāpiri te ±. Tāpiri -16 ki te 12\sqrt{3}.
x=\frac{3\sqrt{3}}{2}-2
Whakawehe -16+12\sqrt{3} ki te 8.
x=\frac{-12\sqrt{3}-16}{8}
Nā, me whakaoti te whārite x=\frac{-16±12\sqrt{3}}{8} ina he tango te ±. Tango 12\sqrt{3} mai i -16.
x=-\frac{3\sqrt{3}}{2}-2
Whakawehe -16-12\sqrt{3} ki te 8.
x=\frac{3\sqrt{3}}{2}-2 x=-\frac{3\sqrt{3}}{2}-2
Kua oti te whārite te whakatau.
x^{2}+16x+64+3x^{2}=75
Me tāpiri te 3x^{2} ki ngā taha e rua.
4x^{2}+16x+64=75
Pahekotia te x^{2} me 3x^{2}, ka 4x^{2}.
4x^{2}+16x=75-64
Tangohia te 64 mai i ngā taha e rua.
4x^{2}+16x=11
Tangohia te 64 i te 75, ka 11.
\frac{4x^{2}+16x}{4}=\frac{11}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{16}{4}x=\frac{11}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+4x=\frac{11}{4}
Whakawehe 16 ki te 4.
x^{2}+4x+2^{2}=\frac{11}{4}+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=\frac{11}{4}+4
Pūrua 2.
x^{2}+4x+4=\frac{27}{4}
Tāpiri \frac{11}{4} ki te 4.
\left(x+2\right)^{2}=\frac{27}{4}
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{27}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\frac{3\sqrt{3}}{2} x+2=-\frac{3\sqrt{3}}{2}
Whakarūnātia.
x=\frac{3\sqrt{3}}{2}-2 x=-\frac{3\sqrt{3}}{2}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}