Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=15 ab=54
Hei whakaoti i te whārite, whakatauwehea te x^{2}+15x+54 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,54 2,27 3,18 6,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 54.
1+54=55 2+27=29 3+18=21 6+9=15
Tātaihia te tapeke mō ia takirua.
a=6 b=9
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(x+6\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-6 x=-9
Hei kimi otinga whārite, me whakaoti te x+6=0 me te x+9=0.
a+b=15 ab=1\times 54=54
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+54. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,54 2,27 3,18 6,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 54.
1+54=55 2+27=29 3+18=21 6+9=15
Tātaihia te tapeke mō ia takirua.
a=6 b=9
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(x^{2}+6x\right)+\left(9x+54\right)
Tuhia anō te x^{2}+15x+54 hei \left(x^{2}+6x\right)+\left(9x+54\right).
x\left(x+6\right)+9\left(x+6\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x+6\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x+6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-6 x=-9
Hei kimi otinga whārite, me whakaoti te x+6=0 me te x+9=0.
x^{2}+15x+54=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-15±\sqrt{15^{2}-4\times 54}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 15 mō b, me 54 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 54}}{2}
Pūrua 15.
x=\frac{-15±\sqrt{225-216}}{2}
Whakareatia -4 ki te 54.
x=\frac{-15±\sqrt{9}}{2}
Tāpiri 225 ki te -216.
x=\frac{-15±3}{2}
Tuhia te pūtakerua o te 9.
x=-\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{-15±3}{2} ina he tāpiri te ±. Tāpiri -15 ki te 3.
x=-6
Whakawehe -12 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-15±3}{2} ina he tango te ±. Tango 3 mai i -15.
x=-9
Whakawehe -18 ki te 2.
x=-6 x=-9
Kua oti te whārite te whakatau.
x^{2}+15x+54=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+15x+54-54=-54
Me tango 54 mai i ngā taha e rua o te whārite.
x^{2}+15x=-54
Mā te tango i te 54 i a ia ake anō ka toe ko te 0.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-54+\left(\frac{15}{2}\right)^{2}
Whakawehea te 15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{2}. Nā, tāpiria te pūrua o te \frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+15x+\frac{225}{4}=-54+\frac{225}{4}
Pūruatia \frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+15x+\frac{225}{4}=\frac{9}{4}
Tāpiri -54 ki te \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{2}=\frac{3}{2} x+\frac{15}{2}=-\frac{3}{2}
Whakarūnātia.
x=-6 x=-9
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.