Whakaoti mō x
x=-10
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+14x+32+8=0
Me tāpiri te 8 ki ngā taha e rua.
x^{2}+14x+40=0
Tāpirihia te 32 ki te 8, ka 40.
a+b=14 ab=40
Hei whakaoti i te whārite, whakatauwehea te x^{2}+14x+40 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,40 2,20 4,10 5,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
1+40=41 2+20=22 4+10=14 5+8=13
Tātaihia te tapeke mō ia takirua.
a=4 b=10
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(x+4\right)\left(x+10\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-4 x=-10
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+10=0.
x^{2}+14x+32+8=0
Me tāpiri te 8 ki ngā taha e rua.
x^{2}+14x+40=0
Tāpirihia te 32 ki te 8, ka 40.
a+b=14 ab=1\times 40=40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,40 2,20 4,10 5,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
1+40=41 2+20=22 4+10=14 5+8=13
Tātaihia te tapeke mō ia takirua.
a=4 b=10
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(x^{2}+4x\right)+\left(10x+40\right)
Tuhia anō te x^{2}+14x+40 hei \left(x^{2}+4x\right)+\left(10x+40\right).
x\left(x+4\right)+10\left(x+4\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x+4\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-4 x=-10
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+10=0.
x^{2}+14x+32=-8
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+14x+32-\left(-8\right)=-8-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
x^{2}+14x+32-\left(-8\right)=0
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
x^{2}+14x+40=0
Tango -8 mai i 32.
x=\frac{-14±\sqrt{14^{2}-4\times 40}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 40}}{2}
Pūrua 14.
x=\frac{-14±\sqrt{196-160}}{2}
Whakareatia -4 ki te 40.
x=\frac{-14±\sqrt{36}}{2}
Tāpiri 196 ki te -160.
x=\frac{-14±6}{2}
Tuhia te pūtakerua o te 36.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-14±6}{2} ina he tāpiri te ±. Tāpiri -14 ki te 6.
x=-4
Whakawehe -8 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-14±6}{2} ina he tango te ±. Tango 6 mai i -14.
x=-10
Whakawehe -20 ki te 2.
x=-4 x=-10
Kua oti te whārite te whakatau.
x^{2}+14x+32=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+14x+32-32=-8-32
Me tango 32 mai i ngā taha e rua o te whārite.
x^{2}+14x=-8-32
Mā te tango i te 32 i a ia ake anō ka toe ko te 0.
x^{2}+14x=-40
Tango 32 mai i -8.
x^{2}+14x+7^{2}=-40+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+14x+49=-40+49
Pūrua 7.
x^{2}+14x+49=9
Tāpiri -40 ki te 49.
\left(x+7\right)^{2}=9
Tauwehea x^{2}+14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+7=3 x+7=-3
Whakarūnātia.
x=-4 x=-10
Me tango 7 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}