Whakaoti mō x (complex solution)
x=-1+7\sqrt{3}i\approx -1+12.124355653i
x=-7\sqrt{3}i-1\approx -1-12.124355653i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+134+2x=-14
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+134+2x+14=0
Me tāpiri te 14 ki ngā taha e rua.
x^{2}+148+2x=0
Tāpirihia te 134 ki te 14, ka 148.
x^{2}+2x+148=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 148}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 148 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 148}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4-592}}{2}
Whakareatia -4 ki te 148.
x=\frac{-2±\sqrt{-588}}{2}
Tāpiri 4 ki te -592.
x=\frac{-2±14\sqrt{3}i}{2}
Tuhia te pūtakerua o te -588.
x=\frac{-2+14\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{-2±14\sqrt{3}i}{2} ina he tāpiri te ±. Tāpiri -2 ki te 14i\sqrt{3}.
x=-1+7\sqrt{3}i
Whakawehe -2+14i\sqrt{3} ki te 2.
x=\frac{-14\sqrt{3}i-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±14\sqrt{3}i}{2} ina he tango te ±. Tango 14i\sqrt{3} mai i -2.
x=-7\sqrt{3}i-1
Whakawehe -2-14i\sqrt{3} ki te 2.
x=-1+7\sqrt{3}i x=-7\sqrt{3}i-1
Kua oti te whārite te whakatau.
x^{2}+134+2x=-14
Me tāpiri te 2x ki ngā taha e rua.
x^{2}+2x=-14-134
Tangohia te 134 mai i ngā taha e rua.
x^{2}+2x=-148
Tangohia te 134 i te -14, ka -148.
x^{2}+2x+1^{2}=-148+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-148+1
Pūrua 1.
x^{2}+2x+1=-147
Tāpiri -148 ki te 1.
\left(x+1\right)^{2}=-147
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-147}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=7\sqrt{3}i x+1=-7\sqrt{3}i
Whakarūnātia.
x=-1+7\sqrt{3}i x=-7\sqrt{3}i-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}