Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+12x+64=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 64}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 64}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144-256}}{2}
Whakareatia -4 ki te 64.
x=\frac{-12±\sqrt{-112}}{2}
Tāpiri 144 ki te -256.
x=\frac{-12±4\sqrt{7}i}{2}
Tuhia te pūtakerua o te -112.
x=\frac{-12+4\sqrt{7}i}{2}
Nā, me whakaoti te whārite x=\frac{-12±4\sqrt{7}i}{2} ina he tāpiri te ±. Tāpiri -12 ki te 4i\sqrt{7}.
x=-6+2\sqrt{7}i
Whakawehe -12+4i\sqrt{7} ki te 2.
x=\frac{-4\sqrt{7}i-12}{2}
Nā, me whakaoti te whārite x=\frac{-12±4\sqrt{7}i}{2} ina he tango te ±. Tango 4i\sqrt{7} mai i -12.
x=-2\sqrt{7}i-6
Whakawehe -12-4i\sqrt{7} ki te 2.
x=-6+2\sqrt{7}i x=-2\sqrt{7}i-6
Kua oti te whārite te whakatau.
x^{2}+12x+64=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+12x+64-64=-64
Me tango 64 mai i ngā taha e rua o te whārite.
x^{2}+12x=-64
Mā te tango i te 64 i a ia ake anō ka toe ko te 0.
x^{2}+12x+6^{2}=-64+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-64+36
Pūrua 6.
x^{2}+12x+36=-28
Tāpiri -64 ki te 36.
\left(x+6\right)^{2}=-28
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{-28}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=2\sqrt{7}i x+6=-2\sqrt{7}i
Whakarūnātia.
x=-6+2\sqrt{7}i x=-2\sqrt{7}i-6
Me tango 6 mai i ngā taha e rua o te whārite.