Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+11x-10=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 1\left(-10\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 11 mō te b, me te -10 mō te c i te ture pūrua.
x=\frac{-11±\sqrt{161}}{2}
Mahia ngā tātaitai.
x=\frac{\sqrt{161}-11}{2} x=\frac{-\sqrt{161}-11}{2}
Whakaotia te whārite x=\frac{-11±\sqrt{161}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-\frac{\sqrt{161}-11}{2}\right)\left(x-\frac{-\sqrt{161}-11}{2}\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{161}-11}{2}\leq 0 x-\frac{-\sqrt{161}-11}{2}\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te x-\frac{\sqrt{161}-11}{2} me te x-\frac{-\sqrt{161}-11}{2}. Whakaarohia te tauira ina he ≤0 tahi te x-\frac{\sqrt{161}-11}{2} me te x-\frac{-\sqrt{161}-11}{2}.
x\leq \frac{-\sqrt{161}-11}{2}
Te otinga e whakaea i ngā koreōrite e rua ko x\leq \frac{-\sqrt{161}-11}{2}.
x-\frac{-\sqrt{161}-11}{2}\geq 0 x-\frac{\sqrt{161}-11}{2}\geq 0
Whakaarohia te tauira ina he ≥0 tahi te x-\frac{\sqrt{161}-11}{2} me te x-\frac{-\sqrt{161}-11}{2}.
x\geq \frac{\sqrt{161}-11}{2}
Te otinga e whakaea i ngā koreōrite e rua ko x\geq \frac{\sqrt{161}-11}{2}.
x\leq \frac{-\sqrt{161}-11}{2}\text{; }x\geq \frac{\sqrt{161}-11}{2}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.