Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=11 ab=28
Hei whakaoti i te whārite, whakatauwehea te x^{2}+11x+28 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,28 2,14 4,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 28.
1+28=29 2+14=16 4+7=11
Tātaihia te tapeke mō ia takirua.
a=4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x+4\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-4 x=-7
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+7=0.
a+b=11 ab=1\times 28=28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,28 2,14 4,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 28.
1+28=29 2+14=16 4+7=11
Tātaihia te tapeke mō ia takirua.
a=4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x^{2}+4x\right)+\left(7x+28\right)
Tuhia anō te x^{2}+11x+28 hei \left(x^{2}+4x\right)+\left(7x+28\right).
x\left(x+4\right)+7\left(x+4\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x+4\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-4 x=-7
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+7=0.
x^{2}+11x+28=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 28}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 11 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 28}}{2}
Pūrua 11.
x=\frac{-11±\sqrt{121-112}}{2}
Whakareatia -4 ki te 28.
x=\frac{-11±\sqrt{9}}{2}
Tāpiri 121 ki te -112.
x=\frac{-11±3}{2}
Tuhia te pūtakerua o te 9.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-11±3}{2} ina he tāpiri te ±. Tāpiri -11 ki te 3.
x=-4
Whakawehe -8 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-11±3}{2} ina he tango te ±. Tango 3 mai i -11.
x=-7
Whakawehe -14 ki te 2.
x=-4 x=-7
Kua oti te whārite te whakatau.
x^{2}+11x+28=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+11x+28-28=-28
Me tango 28 mai i ngā taha e rua o te whārite.
x^{2}+11x=-28
Mā te tango i te 28 i a ia ake anō ka toe ko te 0.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-28+\left(\frac{11}{2}\right)^{2}
Whakawehea te 11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{2}. Nā, tāpiria te pūrua o te \frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+11x+\frac{121}{4}=-28+\frac{121}{4}
Pūruatia \frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+11x+\frac{121}{4}=\frac{9}{4}
Tāpiri -28 ki te \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{2}=\frac{3}{2} x+\frac{11}{2}=-\frac{3}{2}
Whakarūnātia.
x=-4 x=-7
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.