Whakaoti mō x
x=-9
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=18
Hei whakaoti i te whārite, whakatauwehea te x^{2}+11x+18 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=2 b=9
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x+2\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-2 x=-9
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+9=0.
a+b=11 ab=1\times 18=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=2 b=9
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(x^{2}+2x\right)+\left(9x+18\right)
Tuhia anō te x^{2}+11x+18 hei \left(x^{2}+2x\right)+\left(9x+18\right).
x\left(x+2\right)+9\left(x+2\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x+2\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-9
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+9=0.
x^{2}+11x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 18}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 11 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 18}}{2}
Pūrua 11.
x=\frac{-11±\sqrt{121-72}}{2}
Whakareatia -4 ki te 18.
x=\frac{-11±\sqrt{49}}{2}
Tāpiri 121 ki te -72.
x=\frac{-11±7}{2}
Tuhia te pūtakerua o te 49.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-11±7}{2} ina he tāpiri te ±. Tāpiri -11 ki te 7.
x=-2
Whakawehe -4 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-11±7}{2} ina he tango te ±. Tango 7 mai i -11.
x=-9
Whakawehe -18 ki te 2.
x=-2 x=-9
Kua oti te whārite te whakatau.
x^{2}+11x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+11x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
x^{2}+11x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-18+\left(\frac{11}{2}\right)^{2}
Whakawehea te 11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{2}. Nā, tāpiria te pūrua o te \frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+11x+\frac{121}{4}=-18+\frac{121}{4}
Pūruatia \frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+11x+\frac{121}{4}=\frac{49}{4}
Tāpiri -18 ki te \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}+11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{2}=\frac{7}{2} x+\frac{11}{2}=-\frac{7}{2}
Whakarūnātia.
x=-2 x=-9
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}