Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+\frac{1}{2}x-0.75=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-0.75\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{1}{2} mō b, me -0.75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-0.75\right)}}{2}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+3}}{2}
Whakareatia -4 ki te -0.75.
x=\frac{-\frac{1}{2}±\sqrt{\frac{13}{4}}}{2}
Tāpiri \frac{1}{4} ki te 3.
x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2}
Tuhia te pūtakerua o te \frac{13}{4}.
x=\frac{\sqrt{13}-1}{2\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2} ina he tāpiri te ±. Tāpiri -\frac{1}{2} ki te \frac{\sqrt{13}}{2}.
x=\frac{\sqrt{13}-1}{4}
Whakawehe \frac{-1+\sqrt{13}}{2} ki te 2.
x=\frac{-\sqrt{13}-1}{2\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2} ina he tango te ±. Tango \frac{\sqrt{13}}{2} mai i -\frac{1}{2}.
x=\frac{-\sqrt{13}-1}{4}
Whakawehe \frac{-1-\sqrt{13}}{2} ki te 2.
x=\frac{\sqrt{13}-1}{4} x=\frac{-\sqrt{13}-1}{4}
Kua oti te whārite te whakatau.
x^{2}+\frac{1}{2}x-0.75=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\frac{1}{2}x-0.75-\left(-0.75\right)=-\left(-0.75\right)
Me tāpiri 0.75 ki ngā taha e rua o te whārite.
x^{2}+\frac{1}{2}x=-\left(-0.75\right)
Mā te tango i te -0.75 i a ia ake anō ka toe ko te 0.
x^{2}+\frac{1}{2}x=0.75
Tango -0.75 mai i 0.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=0.75+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=0.75+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{16}
Tāpiri 0.75 ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{4}\right)^{2}=\frac{13}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{\sqrt{13}}{4} x+\frac{1}{4}=-\frac{\sqrt{13}}{4}
Whakarūnātia.
x=\frac{\sqrt{13}-1}{4} x=\frac{-\sqrt{13}-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.