Whakaoti mō x
x=2
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+9x^{2}-60x+100=20
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}-60x+100-20=0
Tangohia te 20 mai i ngā taha e rua.
10x^{2}-60x+80=0
Tangohia te 20 i te 100, ka 80.
x^{2}-6x+8=0
Whakawehea ngā taha e rua ki te 10.
a+b=-6 ab=1\times 8=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-4 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Tuhia anō te x^{2}-6x+8 hei \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-4\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=2
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-2=0.
x^{2}+9x^{2}-60x+100=20
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}-60x+100-20=0
Tangohia te 20 mai i ngā taha e rua.
10x^{2}-60x+80=0
Tangohia te 20 i te 100, ka 80.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 10\times 80}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -60 mō b, me 80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 10\times 80}}{2\times 10}
Pūrua -60.
x=\frac{-\left(-60\right)±\sqrt{3600-40\times 80}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-60\right)±\sqrt{3600-3200}}{2\times 10}
Whakareatia -40 ki te 80.
x=\frac{-\left(-60\right)±\sqrt{400}}{2\times 10}
Tāpiri 3600 ki te -3200.
x=\frac{-\left(-60\right)±20}{2\times 10}
Tuhia te pūtakerua o te 400.
x=\frac{60±20}{2\times 10}
Ko te tauaro o -60 ko 60.
x=\frac{60±20}{20}
Whakareatia 2 ki te 10.
x=\frac{80}{20}
Nā, me whakaoti te whārite x=\frac{60±20}{20} ina he tāpiri te ±. Tāpiri 60 ki te 20.
x=4
Whakawehe 80 ki te 20.
x=\frac{40}{20}
Nā, me whakaoti te whārite x=\frac{60±20}{20} ina he tango te ±. Tango 20 mai i 60.
x=2
Whakawehe 40 ki te 20.
x=4 x=2
Kua oti te whārite te whakatau.
x^{2}+9x^{2}-60x+100=20
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Pahekotia te x^{2} me 9x^{2}, ka 10x^{2}.
10x^{2}-60x=20-100
Tangohia te 100 mai i ngā taha e rua.
10x^{2}-60x=-80
Tangohia te 100 i te 20, ka -80.
\frac{10x^{2}-60x}{10}=-\frac{80}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{60}{10}\right)x=-\frac{80}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-6x=-\frac{80}{10}
Whakawehe -60 ki te 10.
x^{2}-6x=-8
Whakawehe -80 ki te 10.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-8+9
Pūrua -3.
x^{2}-6x+9=1
Tāpiri -8 ki te 9.
\left(x-3\right)^{2}=1
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=1 x-3=-1
Whakarūnātia.
x=4 x=2
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}