Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+\frac{2}{3}x-\frac{1}{6}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{6}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{2}{3} mō b, me -\frac{1}{6} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{6}\right)}}{2}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{2}{3}}}{2}
Whakareatia -4 ki te -\frac{1}{6}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{10}{9}}}{2}
Tāpiri \frac{4}{9} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2}
Tuhia te pūtakerua o te \frac{10}{9}.
x=\frac{\sqrt{10}-2}{2\times 3}
Nā, me whakaoti te whārite x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} ina he tāpiri te ±. Tāpiri -\frac{2}{3} ki te \frac{\sqrt{10}}{3}.
x=\frac{\sqrt{10}}{6}-\frac{1}{3}
Whakawehe \frac{-2+\sqrt{10}}{3} ki te 2.
x=\frac{-\sqrt{10}-2}{2\times 3}
Nā, me whakaoti te whārite x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} ina he tango te ±. Tango \frac{\sqrt{10}}{3} mai i -\frac{2}{3}.
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Whakawehe \frac{-2-\sqrt{10}}{3} ki te 2.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Kua oti te whārite te whakatau.
x^{2}+\frac{2}{3}x-\frac{1}{6}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\frac{2}{3}x-\frac{1}{6}-\left(-\frac{1}{6}\right)=-\left(-\frac{1}{6}\right)
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
x^{2}+\frac{2}{3}x=-\left(-\frac{1}{6}\right)
Mā te tango i te -\frac{1}{6} i a ia ake anō ka toe ko te 0.
x^{2}+\frac{2}{3}x=\frac{1}{6}
Tango -\frac{1}{6} mai i 0.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{6}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{6}+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{18}
Tāpiri \frac{1}{6} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=\frac{5}{18}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{5}{18}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{\sqrt{10}}{6} x+\frac{1}{3}=-\frac{\sqrt{10}}{6}
Whakarūnātia.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.