Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\times 10+36=4590-12x
Whakareatia ngā taha e rua o te whārite ki te 6.
x^{2}\times 10+36-4590=-12x
Tangohia te 4590 mai i ngā taha e rua.
x^{2}\times 10-4554=-12x
Tangohia te 4590 i te 36, ka -4554.
x^{2}\times 10-4554+12x=0
Me tāpiri te 12x ki ngā taha e rua.
10x^{2}+12x-4554=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 10\left(-4554\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, 12 mō b, me -4554 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 10\left(-4554\right)}}{2\times 10}
Pūrua 12.
x=\frac{-12±\sqrt{144-40\left(-4554\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-12±\sqrt{144+182160}}{2\times 10}
Whakareatia -40 ki te -4554.
x=\frac{-12±\sqrt{182304}}{2\times 10}
Tāpiri 144 ki te 182160.
x=\frac{-12±12\sqrt{1266}}{2\times 10}
Tuhia te pūtakerua o te 182304.
x=\frac{-12±12\sqrt{1266}}{20}
Whakareatia 2 ki te 10.
x=\frac{12\sqrt{1266}-12}{20}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{1266}}{20} ina he tāpiri te ±. Tāpiri -12 ki te 12\sqrt{1266}.
x=\frac{3\sqrt{1266}-3}{5}
Whakawehe -12+12\sqrt{1266} ki te 20.
x=\frac{-12\sqrt{1266}-12}{20}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{1266}}{20} ina he tango te ±. Tango 12\sqrt{1266} mai i -12.
x=\frac{-3\sqrt{1266}-3}{5}
Whakawehe -12-12\sqrt{1266} ki te 20.
x=\frac{3\sqrt{1266}-3}{5} x=\frac{-3\sqrt{1266}-3}{5}
Kua oti te whārite te whakatau.
x^{2}\times 10+36=4590-12x
Whakareatia ngā taha e rua o te whārite ki te 6.
x^{2}\times 10+36+12x=4590
Me tāpiri te 12x ki ngā taha e rua.
x^{2}\times 10+12x=4590-36
Tangohia te 36 mai i ngā taha e rua.
x^{2}\times 10+12x=4554
Tangohia te 36 i te 4590, ka 4554.
10x^{2}+12x=4554
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{10x^{2}+12x}{10}=\frac{4554}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\frac{12}{10}x=\frac{4554}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}+\frac{6}{5}x=\frac{4554}{10}
Whakahekea te hautanga \frac{12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{6}{5}x=\frac{2277}{5}
Whakahekea te hautanga \frac{4554}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{2277}{5}+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{2277}{5}+\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{11394}{25}
Tāpiri \frac{2277}{5} ki te \frac{9}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{5}\right)^{2}=\frac{11394}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{11394}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{3\sqrt{1266}}{5} x+\frac{3}{5}=-\frac{3\sqrt{1266}}{5}
Whakarūnātia.
x=\frac{3\sqrt{1266}-3}{5} x=\frac{-3\sqrt{1266}-3}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.