Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\frac{i\sqrt{8\sqrt{3}-2}}{2} x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
Kua oti te whārite te whakatau.
x^{2}-\frac{1}{2}=-2\sqrt{3}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
x^{2}-\frac{1}{2}+2\sqrt{3}=0
Me tāpiri te 2\sqrt{3} ki ngā taha e rua.
x^{2}+2\sqrt{3}-\frac{1}{2}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(2\sqrt{3}-\frac{1}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{1}{2}+2\sqrt{3} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(2\sqrt{3}-\frac{1}{2}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{2-8\sqrt{3}}}{2}
Whakareatia -4 ki te -\frac{1}{2}+2\sqrt{3}.
x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2}
Tuhia te pūtakerua o te 2-8\sqrt{3}.
x=\frac{i\sqrt{8\sqrt{3}-2}}{2}
Nā, me whakaoti te whārite x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2} ina he tāpiri te ±.
x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
Nā, me whakaoti te whārite x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2} ina he tango te ±.
x=\frac{i\sqrt{8\sqrt{3}-2}}{2} x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
Kua oti te whārite te whakatau.