Whakaoti mō t
t=1
Tohaina
Kua tāruatia ki te papatopenga
a+b=-2 ab=1
Hei whakaoti i te whārite, whakatauwehea te t^{2}-2t+1 mā te whakamahi i te tātai t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(t-1\right)\left(t-1\right)
Me tuhi anō te kīanga whakatauwehe \left(t+a\right)\left(t+b\right) mā ngā uara i tātaihia.
\left(t-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
t=1
Hei kimi i te otinga whārite, whakaotia te t-1=0.
a+b=-2 ab=1\times 1=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(t^{2}-t\right)+\left(-t+1\right)
Tuhia anō te t^{2}-2t+1 hei \left(t^{2}-t\right)+\left(-t+1\right).
t\left(t-1\right)-\left(t-1\right)
Tauwehea te t i te tuatahi me te -1 i te rōpū tuarua.
\left(t-1\right)\left(t-1\right)
Whakatauwehea atu te kīanga pātahi t-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(t-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
t=1
Hei kimi i te otinga whārite, whakaotia te t-1=0.
t^{2}-2t+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
Pūrua -2.
t=\frac{-\left(-2\right)±\sqrt{0}}{2}
Tāpiri 4 ki te -4.
t=-\frac{-2}{2}
Tuhia te pūtakerua o te 0.
t=\frac{2}{2}
Ko te tauaro o -2 ko 2.
t=1
Whakawehe 2 ki te 2.
t^{2}-2t+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\left(t-1\right)^{2}=0
Tauwehea t^{2}-2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-1=0 t-1=0
Whakarūnātia.
t=1 t=1
Me tāpiri 1 ki ngā taha e rua o te whārite.
t=1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}