Whakaoti mō r
r = \frac{\sqrt{433} + 23}{2} \approx 21.904326023
r = \frac{23 - \sqrt{433}}{2} \approx 1.095673977
Tohaina
Kua tāruatia ki te papatopenga
r^{2}-23r+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 24}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -23 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-23\right)±\sqrt{529-4\times 24}}{2}
Pūrua -23.
r=\frac{-\left(-23\right)±\sqrt{529-96}}{2}
Whakareatia -4 ki te 24.
r=\frac{-\left(-23\right)±\sqrt{433}}{2}
Tāpiri 529 ki te -96.
r=\frac{23±\sqrt{433}}{2}
Ko te tauaro o -23 ko 23.
r=\frac{\sqrt{433}+23}{2}
Nā, me whakaoti te whārite r=\frac{23±\sqrt{433}}{2} ina he tāpiri te ±. Tāpiri 23 ki te \sqrt{433}.
r=\frac{23-\sqrt{433}}{2}
Nā, me whakaoti te whārite r=\frac{23±\sqrt{433}}{2} ina he tango te ±. Tango \sqrt{433} mai i 23.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
Kua oti te whārite te whakatau.
r^{2}-23r+24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
r^{2}-23r+24-24=-24
Me tango 24 mai i ngā taha e rua o te whārite.
r^{2}-23r=-24
Mā te tango i te 24 i a ia ake anō ka toe ko te 0.
r^{2}-23r+\left(-\frac{23}{2}\right)^{2}=-24+\left(-\frac{23}{2}\right)^{2}
Whakawehea te -23, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{23}{2}. Nā, tāpiria te pūrua o te -\frac{23}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-23r+\frac{529}{4}=-24+\frac{529}{4}
Pūruatia -\frac{23}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}-23r+\frac{529}{4}=\frac{433}{4}
Tāpiri -24 ki te \frac{529}{4}.
\left(r-\frac{23}{2}\right)^{2}=\frac{433}{4}
Tauwehea r^{2}-23r+\frac{529}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{23}{2}\right)^{2}}=\sqrt{\frac{433}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-\frac{23}{2}=\frac{\sqrt{433}}{2} r-\frac{23}{2}=-\frac{\sqrt{433}}{2}
Whakarūnātia.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
Me tāpiri \frac{23}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}