Whakaoti mō p
p = \frac{\sqrt{697} + 3}{2} \approx 14.700378782
p=\frac{3-\sqrt{697}}{2}\approx -11.700378782
Tohaina
Kua tāruatia ki te papatopenga
p^{2}-3p+3=175
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p^{2}-3p+3-175=175-175
Me tango 175 mai i ngā taha e rua o te whārite.
p^{2}-3p+3-175=0
Mā te tango i te 175 i a ia ake anō ka toe ko te 0.
p^{2}-3p-172=0
Tango 175 mai i 3.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-172\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -172 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-3\right)±\sqrt{9-4\left(-172\right)}}{2}
Pūrua -3.
p=\frac{-\left(-3\right)±\sqrt{9+688}}{2}
Whakareatia -4 ki te -172.
p=\frac{-\left(-3\right)±\sqrt{697}}{2}
Tāpiri 9 ki te 688.
p=\frac{3±\sqrt{697}}{2}
Ko te tauaro o -3 ko 3.
p=\frac{\sqrt{697}+3}{2}
Nā, me whakaoti te whārite p=\frac{3±\sqrt{697}}{2} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{697}.
p=\frac{3-\sqrt{697}}{2}
Nā, me whakaoti te whārite p=\frac{3±\sqrt{697}}{2} ina he tango te ±. Tango \sqrt{697} mai i 3.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
Kua oti te whārite te whakatau.
p^{2}-3p+3=175
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
p^{2}-3p+3-3=175-3
Me tango 3 mai i ngā taha e rua o te whārite.
p^{2}-3p=175-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
p^{2}-3p=172
Tango 3 mai i 175.
p^{2}-3p+\left(-\frac{3}{2}\right)^{2}=172+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-3p+\frac{9}{4}=172+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-3p+\frac{9}{4}=\frac{697}{4}
Tāpiri 172 ki te \frac{9}{4}.
\left(p-\frac{3}{2}\right)^{2}=\frac{697}{4}
Tauwehea p^{2}-3p+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{3}{2}\right)^{2}}=\sqrt{\frac{697}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{3}{2}=\frac{\sqrt{697}}{2} p-\frac{3}{2}=-\frac{\sqrt{697}}{2}
Whakarūnātia.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}