Tīpoka ki ngā ihirangi matua
Whakaoti mō n (complex solution)
Tick mark Image
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{3}+n^{2}+n-1110=0
Tangohia te 1110 mai i ngā taha e rua.
±1110,±555,±370,±222,±185,±111,±74,±37,±30,±15,±10,±6,±5,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1110, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
n=10
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
n^{2}+11n+111=0
Mā te whakatakotoranga Tauwehe, he tauwehe te n-k o te pūrau mō ia pūtake k. Whakawehea te n^{3}+n^{2}+n-1110 ki te n-10, kia riro ko n^{2}+11n+111. Whakaotihia te whārite ina ōrite te hua ki te 0.
n=\frac{-11±\sqrt{11^{2}-4\times 1\times 111}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 11 mō te b, me te 111 mō te c i te ture pūrua.
n=\frac{-11±\sqrt{-323}}{2}
Mahia ngā tātaitai.
n=\frac{-\sqrt{323}i-11}{2} n=\frac{-11+\sqrt{323}i}{2}
Whakaotia te whārite n^{2}+11n+111=0 ina he tōrunga te ±, ina he tōraro te ±.
n=10 n=\frac{-\sqrt{323}i-11}{2} n=\frac{-11+\sqrt{323}i}{2}
Rārangitia ngā otinga katoa i kitea.
n^{3}+n^{2}+n-1110=0
Tangohia te 1110 mai i ngā taha e rua.
±1110,±555,±370,±222,±185,±111,±74,±37,±30,±15,±10,±6,±5,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1110, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
n=10
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
n^{2}+11n+111=0
Mā te whakatakotoranga Tauwehe, he tauwehe te n-k o te pūrau mō ia pūtake k. Whakawehea te n^{3}+n^{2}+n-1110 ki te n-10, kia riro ko n^{2}+11n+111. Whakaotihia te whārite ina ōrite te hua ki te 0.
n=\frac{-11±\sqrt{11^{2}-4\times 1\times 111}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 11 mō te b, me te 111 mō te c i te ture pūrua.
n=\frac{-11±\sqrt{-323}}{2}
Mahia ngā tātaitai.
n\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
n=10
Rārangitia ngā otinga katoa i kitea.