Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -2, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
m=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
m^{2}-3m+2=0
Mā te whakatakotoranga Tauwehe, he tauwehe te m-k o te pūrau mō ia pūtake k. Whakawehea te m^{3}-4m^{2}+5m-2 ki te m-1, kia riro ko m^{2}-3m+2. Whakaotihia te whārite ina ōrite te hua ki te 0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te 2 mō te c i te ture pūrua.
m=\frac{3±1}{2}
Mahia ngā tātaitai.
m=1 m=2
Whakaotia te whārite m^{2}-3m+2=0 ina he tōrunga te ±, ina he tōraro te ±.
m=1 m=2
Rārangitia ngā otinga katoa i kitea.