Whakaoti mō m
m=2\sqrt{114}+20\approx 41.354156504
m=20-2\sqrt{114}\approx -1.354156504
Tohaina
Kua tāruatia ki te papatopenga
m^{2}-40m-56=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-56\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -40 mō b, me -56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-40\right)±\sqrt{1600-4\left(-56\right)}}{2}
Pūrua -40.
m=\frac{-\left(-40\right)±\sqrt{1600+224}}{2}
Whakareatia -4 ki te -56.
m=\frac{-\left(-40\right)±\sqrt{1824}}{2}
Tāpiri 1600 ki te 224.
m=\frac{-\left(-40\right)±4\sqrt{114}}{2}
Tuhia te pūtakerua o te 1824.
m=\frac{40±4\sqrt{114}}{2}
Ko te tauaro o -40 ko 40.
m=\frac{4\sqrt{114}+40}{2}
Nā, me whakaoti te whārite m=\frac{40±4\sqrt{114}}{2} ina he tāpiri te ±. Tāpiri 40 ki te 4\sqrt{114}.
m=2\sqrt{114}+20
Whakawehe 40+4\sqrt{114} ki te 2.
m=\frac{40-4\sqrt{114}}{2}
Nā, me whakaoti te whārite m=\frac{40±4\sqrt{114}}{2} ina he tango te ±. Tango 4\sqrt{114} mai i 40.
m=20-2\sqrt{114}
Whakawehe 40-4\sqrt{114} ki te 2.
m=2\sqrt{114}+20 m=20-2\sqrt{114}
Kua oti te whārite te whakatau.
m^{2}-40m-56=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-40m-56-\left(-56\right)=-\left(-56\right)
Me tāpiri 56 ki ngā taha e rua o te whārite.
m^{2}-40m=-\left(-56\right)
Mā te tango i te -56 i a ia ake anō ka toe ko te 0.
m^{2}-40m=56
Tango -56 mai i 0.
m^{2}-40m+\left(-20\right)^{2}=56+\left(-20\right)^{2}
Whakawehea te -40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -20. Nā, tāpiria te pūrua o te -20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-40m+400=56+400
Pūrua -20.
m^{2}-40m+400=456
Tāpiri 56 ki te 400.
\left(m-20\right)^{2}=456
Tauwehea m^{2}-40m+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-20\right)^{2}}=\sqrt{456}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-20=2\sqrt{114} m-20=-2\sqrt{114}
Whakarūnātia.
m=2\sqrt{114}+20 m=20-2\sqrt{114}
Me tāpiri 20 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}