Whakaoti mō m
m=\frac{13+\sqrt{119}i}{2}\approx 6.5+5.454356057i
m=\frac{-\sqrt{119}i+13}{2}\approx 6.5-5.454356057i
Tohaina
Kua tāruatia ki te papatopenga
m^{2}-13m+72=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 72}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -13 mō b, me 72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-13\right)±\sqrt{169-4\times 72}}{2}
Pūrua -13.
m=\frac{-\left(-13\right)±\sqrt{169-288}}{2}
Whakareatia -4 ki te 72.
m=\frac{-\left(-13\right)±\sqrt{-119}}{2}
Tāpiri 169 ki te -288.
m=\frac{-\left(-13\right)±\sqrt{119}i}{2}
Tuhia te pūtakerua o te -119.
m=\frac{13±\sqrt{119}i}{2}
Ko te tauaro o -13 ko 13.
m=\frac{13+\sqrt{119}i}{2}
Nā, me whakaoti te whārite m=\frac{13±\sqrt{119}i}{2} ina he tāpiri te ±. Tāpiri 13 ki te i\sqrt{119}.
m=\frac{-\sqrt{119}i+13}{2}
Nā, me whakaoti te whārite m=\frac{13±\sqrt{119}i}{2} ina he tango te ±. Tango i\sqrt{119} mai i 13.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
Kua oti te whārite te whakatau.
m^{2}-13m+72=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-13m+72-72=-72
Me tango 72 mai i ngā taha e rua o te whārite.
m^{2}-13m=-72
Mā te tango i te 72 i a ia ake anō ka toe ko te 0.
m^{2}-13m+\left(-\frac{13}{2}\right)^{2}=-72+\left(-\frac{13}{2}\right)^{2}
Whakawehea te -13, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{2}. Nā, tāpiria te pūrua o te -\frac{13}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-13m+\frac{169}{4}=-72+\frac{169}{4}
Pūruatia -\frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-13m+\frac{169}{4}=-\frac{119}{4}
Tāpiri -72 ki te \frac{169}{4}.
\left(m-\frac{13}{2}\right)^{2}=-\frac{119}{4}
Tauwehea m^{2}-13m+\frac{169}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{13}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{13}{2}=\frac{\sqrt{119}i}{2} m-\frac{13}{2}=-\frac{\sqrt{119}i}{2}
Whakarūnātia.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
Me tāpiri \frac{13}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}