Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

e^{-3x+1}=4
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(e^{-3x+1})=\log(4)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(-3x+1\right)\log(e)=\log(4)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-3x+1=\frac{\log(4)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
-3x+1=\log_{e}\left(4\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-3x=2\ln(2)-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{2\ln(2)-1}{-3}
Whakawehea ngā taha e rua ki te -3.