Whakaoti mō c
c=5\sqrt{6}+5\approx 17.247448714
c=5-5\sqrt{6}\approx -7.247448714
Tohaina
Kua tāruatia ki te papatopenga
c^{2}-10c-125=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-125\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me -125 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-10\right)±\sqrt{100-4\left(-125\right)}}{2}
Pūrua -10.
c=\frac{-\left(-10\right)±\sqrt{100+500}}{2}
Whakareatia -4 ki te -125.
c=\frac{-\left(-10\right)±\sqrt{600}}{2}
Tāpiri 100 ki te 500.
c=\frac{-\left(-10\right)±10\sqrt{6}}{2}
Tuhia te pūtakerua o te 600.
c=\frac{10±10\sqrt{6}}{2}
Ko te tauaro o -10 ko 10.
c=\frac{10\sqrt{6}+10}{2}
Nā, me whakaoti te whārite c=\frac{10±10\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri 10 ki te 10\sqrt{6}.
c=5\sqrt{6}+5
Whakawehe 10+10\sqrt{6} ki te 2.
c=\frac{10-10\sqrt{6}}{2}
Nā, me whakaoti te whārite c=\frac{10±10\sqrt{6}}{2} ina he tango te ±. Tango 10\sqrt{6} mai i 10.
c=5-5\sqrt{6}
Whakawehe 10-10\sqrt{6} ki te 2.
c=5\sqrt{6}+5 c=5-5\sqrt{6}
Kua oti te whārite te whakatau.
c^{2}-10c-125=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
c^{2}-10c-125-\left(-125\right)=-\left(-125\right)
Me tāpiri 125 ki ngā taha e rua o te whārite.
c^{2}-10c=-\left(-125\right)
Mā te tango i te -125 i a ia ake anō ka toe ko te 0.
c^{2}-10c=125
Tango -125 mai i 0.
c^{2}-10c+\left(-5\right)^{2}=125+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
c^{2}-10c+25=125+25
Pūrua -5.
c^{2}-10c+25=150
Tāpiri 125 ki te 25.
\left(c-5\right)^{2}=150
Tauwehea c^{2}-10c+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-5\right)^{2}}=\sqrt{150}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c-5=5\sqrt{6} c-5=-5\sqrt{6}
Whakarūnātia.
c=5\sqrt{6}+5 c=5-5\sqrt{6}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}