Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a\left(a+3-2\right)=0
Tauwehea te a.
a=0 a=-1
Hei kimi otinga whārite, me whakaoti te a=0 me te a+1=0.
a^{2}+a=0
Pahekotia te 3a me -2a, ka a.
a=\frac{-1±\sqrt{1^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±1}{2}
Tuhia te pūtakerua o te 1^{2}.
a=\frac{0}{2}
Nā, me whakaoti te whārite a=\frac{-1±1}{2} ina he tāpiri te ±. Tāpiri -1 ki te 1.
a=0
Whakawehe 0 ki te 2.
a=-\frac{2}{2}
Nā, me whakaoti te whārite a=\frac{-1±1}{2} ina he tango te ±. Tango 1 mai i -1.
a=-1
Whakawehe -2 ki te 2.
a=0 a=-1
Kua oti te whārite te whakatau.
a^{2}+a=0
Pahekotia te 3a me -2a, ka a.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+a+\frac{1}{4}=\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(a+\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea a^{2}+a+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{1}{2}=\frac{1}{2} a+\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
a=0 a=-1
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.