Whakaoti mō x
x=8\sqrt{91}\approx 76.315136113
x=-8\sqrt{91}\approx -76.315136113
Graph
Tohaina
Kua tāruatia ki te papatopenga
9801+x^{2}=125^{2}
Tātaihia te 99 mā te pū o 2, kia riro ko 9801.
9801+x^{2}=15625
Tātaihia te 125 mā te pū o 2, kia riro ko 15625.
x^{2}=15625-9801
Tangohia te 9801 mai i ngā taha e rua.
x^{2}=5824
Tangohia te 9801 i te 15625, ka 5824.
x=8\sqrt{91} x=-8\sqrt{91}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9801+x^{2}=125^{2}
Tātaihia te 99 mā te pū o 2, kia riro ko 9801.
9801+x^{2}=15625
Tātaihia te 125 mā te pū o 2, kia riro ko 15625.
9801+x^{2}-15625=0
Tangohia te 15625 mai i ngā taha e rua.
-5824+x^{2}=0
Tangohia te 15625 i te 9801, ka -5824.
x^{2}-5824=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-5824\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -5824 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5824\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{23296}}{2}
Whakareatia -4 ki te -5824.
x=\frac{0±16\sqrt{91}}{2}
Tuhia te pūtakerua o te 23296.
x=8\sqrt{91}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{91}}{2} ina he tāpiri te ±.
x=-8\sqrt{91}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{91}}{2} ina he tango te ±.
x=8\sqrt{91} x=-8\sqrt{91}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}