Whakaoti mō x (complex solution)
x=-18\sqrt{6}i\approx -0-44.09081537i
x=18\sqrt{6}i\approx 44.09081537i
Graph
Tohaina
Kua tāruatia ki te papatopenga
81=45^{2}+x^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
81=2025+x^{2}
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
2025+x^{2}=81
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=81-2025
Tangohia te 2025 mai i ngā taha e rua.
x^{2}=-1944
Tangohia te 2025 i te 81, ka -1944.
x=18\sqrt{6}i x=-18\sqrt{6}i
Kua oti te whārite te whakatau.
81=45^{2}+x^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
81=2025+x^{2}
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
2025+x^{2}=81
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2025+x^{2}-81=0
Tangohia te 81 mai i ngā taha e rua.
1944+x^{2}=0
Tangohia te 81 i te 2025, ka 1944.
x^{2}+1944=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 1944}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 1944 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1944}}{2}
Pūrua 0.
x=\frac{0±\sqrt{-7776}}{2}
Whakareatia -4 ki te 1944.
x=\frac{0±36\sqrt{6}i}{2}
Tuhia te pūtakerua o te -7776.
x=18\sqrt{6}i
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{6}i}{2} ina he tāpiri te ±.
x=-18\sqrt{6}i
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{6}i}{2} ina he tango te ±.
x=18\sqrt{6}i x=-18\sqrt{6}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}