Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

49+x^{2}=11^{2}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49+x^{2}=121
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
x^{2}=121-49
Tangohia te 49 mai i ngā taha e rua.
x^{2}=72
Tangohia te 49 i te 121, ka 72.
x=6\sqrt{2} x=-6\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
49+x^{2}=11^{2}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
49+x^{2}=121
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
49+x^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
-72+x^{2}=0
Tangohia te 121 i te 49, ka -72.
x^{2}-72=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-72\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-72\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{288}}{2}
Whakareatia -4 ki te -72.
x=\frac{0±12\sqrt{2}}{2}
Tuhia te pūtakerua o te 288.
x=6\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{2} ina he tāpiri te ±.
x=-6\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{2} ina he tango te ±.
x=6\sqrt{2} x=-6\sqrt{2}
Kua oti te whārite te whakatau.