Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36=x\left(x-3\right)
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
x^{2}-3x=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-3x-36=0
Tangohia te 36 mai i ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-36\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+144}}{2}
Whakareatia -4 ki te -36.
x=\frac{-\left(-3\right)±\sqrt{153}}{2}
Tāpiri 9 ki te 144.
x=\frac{-\left(-3\right)±3\sqrt{17}}{2}
Tuhia te pūtakerua o te 153.
x=\frac{3±3\sqrt{17}}{2}
Ko te tauaro o -3 ko 3.
x=\frac{3\sqrt{17}+3}{2}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{17}}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3\sqrt{17}.
x=\frac{3-3\sqrt{17}}{2}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{17}}{2} ina he tango te ±. Tango 3\sqrt{17} mai i 3.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
Kua oti te whārite te whakatau.
36=x\left(x-3\right)
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36=x^{2}-3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-3.
x^{2}-3x=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=36+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=36+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{153}{4}
Tāpiri 36 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{153}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3\sqrt{17}}{2} x-\frac{3}{2}=-\frac{3\sqrt{17}}{2}
Whakarūnātia.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.