Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6^{2}=x^{2}\times 3
Whakareatia te x ki te x, ka x^{2}.
36=x^{2}\times 3
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
x^{2}\times 3=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{36}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=12
Whakawehea te 36 ki te 3, kia riro ko 12.
x=2\sqrt{3} x=-2\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6^{2}=x^{2}\times 3
Whakareatia te x ki te x, ka x^{2}.
36=x^{2}\times 3
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
x^{2}\times 3=36
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}\times 3-36=0
Tangohia te 36 mai i ngā taha e rua.
3x^{2}-36=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-36\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-36\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-36\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{432}}{2\times 3}
Whakareatia -12 ki te -36.
x=\frac{0±12\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 432.
x=\frac{0±12\sqrt{3}}{6}
Whakareatia 2 ki te 3.
x=2\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{3}}{6} ina he tāpiri te ±.
x=-2\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{3}}{6} ina he tango te ±.
x=2\sqrt{3} x=-2\sqrt{3}
Kua oti te whārite te whakatau.