Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x_2
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x_2 (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5^{-5x+x_{2}+6}=1
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(5^{-5x+x_{2}+6})=\log(1)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(-5x+x_{2}+6\right)\log(5)=\log(1)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-5x+x_{2}+6=\frac{\log(1)}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
-5x+x_{2}+6=\log_{5}\left(1\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-5x=-\left(x_{2}+6\right)
Me tango x_{2}+6 mai i ngā taha e rua o te whārite.
x=-\frac{x_{2}+6}{-5}
Whakawehea ngā taha e rua ki te -5.
5^{x_{2}+6-5x}=1
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(5^{x_{2}+6-5x})=\log(1)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(x_{2}+6-5x\right)\log(5)=\log(1)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x_{2}+6-5x=\frac{\log(1)}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
x_{2}+6-5x=\log_{5}\left(1\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x_{2}=-\left(6-5x\right)
Me tango -5x+6 mai i ngā taha e rua o te whārite.