Whakaoti mō x
x=1
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
16-4x\left(5-x\right)=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16-20x+4x^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te 5-x.
4-5x+x^{2}=0
Whakawehea ngā taha e rua ki te 4.
x^{2}-5x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Tuhia anō te x^{2}-5x+4 hei \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-4\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-1=0.
16-4x\left(5-x\right)=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16-20x+4x^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te 5-x.
4x^{2}-20x+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 16}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -20 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 16}}{2\times 4}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 16}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-20\right)±\sqrt{400-256}}{2\times 4}
Whakareatia -16 ki te 16.
x=\frac{-\left(-20\right)±\sqrt{144}}{2\times 4}
Tāpiri 400 ki te -256.
x=\frac{-\left(-20\right)±12}{2\times 4}
Tuhia te pūtakerua o te 144.
x=\frac{20±12}{2\times 4}
Ko te tauaro o -20 ko 20.
x=\frac{20±12}{8}
Whakareatia 2 ki te 4.
x=\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{20±12}{8} ina he tāpiri te ±. Tāpiri 20 ki te 12.
x=4
Whakawehe 32 ki te 8.
x=\frac{8}{8}
Nā, me whakaoti te whārite x=\frac{20±12}{8} ina he tango te ±. Tango 12 mai i 20.
x=1
Whakawehe 8 ki te 8.
x=4 x=1
Kua oti te whārite te whakatau.
16-4x\left(5-x\right)=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16-20x+4x^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te 5-x.
-20x+4x^{2}=-16
Tangohia te 16 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x^{2}-20x=-16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}-20x}{4}=-\frac{16}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{16}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-5x=-\frac{16}{4}
Whakawehe -20 ki te 4.
x^{2}-5x=-4
Whakawehe -16 ki te 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
x=4 x=1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}