Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3^{x}-2\times 3^{x}\times \frac{1}{9}=7
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
3^{x}-\frac{2}{9}\times 3^{x}=7
Whakareatia te 2 ki te \frac{1}{9}, ka \frac{2}{9}.
\frac{7}{9}\times 3^{x}=7
Pahekotia te 3^{x} me -\frac{2}{9}\times 3^{x}, ka \frac{7}{9}\times 3^{x}.
3^{x}=7\times \frac{9}{7}
Me whakarea ngā taha e rua ki te \frac{9}{7}, te tau utu o \frac{7}{9}.
3^{x}=9
Whakareatia te 7 ki te \frac{9}{7}, ka 9.
\log(3^{x})=\log(9)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(3)=\log(9)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(9)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
x=\log_{3}\left(9\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).