Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3^{a+b}=243
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(3^{a+b})=\log(243)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(a+b\right)\log(3)=\log(243)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
a+b=\frac{\log(243)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
a+b=\log_{3}\left(243\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
a=5-b
Me tango b mai i ngā taha e rua o te whārite.
3^{b+a}=243
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(3^{b+a})=\log(243)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(b+a\right)\log(3)=\log(243)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
b+a=\frac{\log(243)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
b+a=\log_{3}\left(243\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=5-a
Me tango a mai i ngā taha e rua o te whārite.