Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

225+19639^{2}=x^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
225+385690321=x^{2}
Tātaihia te 19639 mā te pū o 2, kia riro ko 385690321.
385690546=x^{2}
Tāpirihia te 225 ki te 385690321, ka 385690546.
x^{2}=385690546
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\sqrt{385690546} x=-\sqrt{385690546}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
225+19639^{2}=x^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
225+385690321=x^{2}
Tātaihia te 19639 mā te pū o 2, kia riro ko 385690321.
385690546=x^{2}
Tāpirihia te 225 ki te 385690321, ka 385690546.
x^{2}=385690546
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-385690546=0
Tangohia te 385690546 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-385690546\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -385690546 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-385690546\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{1542762184}}{2}
Whakareatia -4 ki te -385690546.
x=\frac{0±2\sqrt{385690546}}{2}
Tuhia te pūtakerua o te 1542762184.
x=\sqrt{385690546}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{385690546}}{2} ina he tāpiri te ±.
x=-\sqrt{385690546}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{385690546}}{2} ina he tango te ±.
x=\sqrt{385690546} x=-\sqrt{385690546}
Kua oti te whārite te whakatau.