Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

225+19.639^{2}=x^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
225+385.690321=x^{2}
Tātaihia te 19.639 mā te pū o 2, kia riro ko 385.690321.
610.690321=x^{2}
Tāpirihia te 225 ki te 385.690321, ka 610.690321.
x^{2}=610.690321
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{\sqrt{610690321}}{1000} x=-\frac{\sqrt{610690321}}{1000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
225+19.639^{2}=x^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
225+385.690321=x^{2}
Tātaihia te 19.639 mā te pū o 2, kia riro ko 385.690321.
610.690321=x^{2}
Tāpirihia te 225 ki te 385.690321, ka 610.690321.
x^{2}=610.690321
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-610.690321=0
Tangohia te 610.690321 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-610.690321\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -610.690321 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-610.690321\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{2442.761284}}{2}
Whakareatia -4 ki te -610.690321.
x=\frac{0±\frac{\sqrt{610690321}}{500}}{2}
Tuhia te pūtakerua o te 2442.761284.
x=\frac{\sqrt{610690321}}{1000}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{610690321}}{500}}{2} ina he tāpiri te ±.
x=-\frac{\sqrt{610690321}}{1000}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{610690321}}{500}}{2} ina he tango te ±.
x=\frac{\sqrt{610690321}}{1000} x=-\frac{\sqrt{610690321}}{1000}
Kua oti te whārite te whakatau.