Aromātai
-\frac{93296}{5}=-18659.2
Tauwehe
-\frac{93296}{5} = -18659\frac{1}{5} = -18659.2
Tohaina
Kua tāruatia ki te papatopenga
98\times 120-10^{3}\times 98\times 200\times 10^{-3}-920\times 98\times 120\times 10^{-3}
Whakareatia te 10^{3} ki te 10^{-3}, ka 1.
98\times 120-98\times 200-920\times 98\times 120\times 10^{-3}
Whakareatia te 10^{3} ki te 10^{-3}, ka 1.
11760-98\times 200-920\times 98\times 120\times 10^{-3}
Whakareatia te 98 ki te 120, ka 11760.
11760-19600-920\times 98\times 120\times 10^{-3}
Whakareatia te 98 ki te 200, ka 19600.
-7840-920\times 98\times 120\times 10^{-3}
Tangohia te 19600 i te 11760, ka -7840.
-7840-90160\times 120\times 10^{-3}
Whakareatia te 920 ki te 98, ka 90160.
-7840-10819200\times 10^{-3}
Whakareatia te 90160 ki te 120, ka 10819200.
-7840-10819200\times \frac{1}{1000}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
-7840-\frac{54096}{5}
Whakareatia te 10819200 ki te \frac{1}{1000}, ka \frac{54096}{5}.
-\frac{93296}{5}
Tangohia te \frac{54096}{5} i te -7840, ka -\frac{93296}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}