Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1=\left(0\times 5\right)^{2}+y^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1=0^{2}+y^{2}
Whakareatia te 0 ki te 5, ka 0.
1=0+y^{2}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
1=y^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
\left(y-1\right)\left(y+1\right)=0
Whakaarohia te y^{2}-1. Tuhia anō te y^{2}-1 hei y^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=1 y=-1
Hei kimi otinga whārite, me whakaoti te y-1=0 me te y+1=0.
1=\left(0\times 5\right)^{2}+y^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1=0^{2}+y^{2}
Whakareatia te 0 ki te 5, ka 0.
1=0+y^{2}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
1=y^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=1 y=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1=\left(0\times 5\right)^{2}+y^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1=0^{2}+y^{2}
Whakareatia te 0 ki te 5, ka 0.
1=0+y^{2}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
1=y^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
y^{2}=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{4}}{2}
Whakareatia -4 ki te -1.
y=\frac{0±2}{2}
Tuhia te pūtakerua o te 4.
y=1
Nā, me whakaoti te whārite y=\frac{0±2}{2} ina he tāpiri te ±. Whakawehe 2 ki te 2.
y=-1
Nā, me whakaoti te whārite y=\frac{0±2}{2} ina he tango te ±. Whakawehe -2 ki te 2.
y=1 y=-1
Kua oti te whārite te whakatau.