Whakaoti mō x
x=12
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te -4x me -2x, ka -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Tāpirihia te 4 ki te 1, ka 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Pahekotia te 2x me 4x, ka 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Tāpirihia te 1 ki te 4, ka 5.
3x^{2}-6x+5-2x^{2}=6x+5
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-6x+5=6x+5
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-6x+5-6x=5
Tangohia te 6x mai i ngā taha e rua.
x^{2}-12x+5=5
Pahekotia te -6x me -6x, ka -12x.
x^{2}-12x+5-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-12x=0
Tangohia te 5 i te 5, ka 0.
x\left(x-12\right)=0
Tauwehea te x.
x=0 x=12
Hei kimi otinga whārite, me whakaoti te x=0 me te x-12=0.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te -4x me -2x, ka -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Tāpirihia te 4 ki te 1, ka 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Pahekotia te 2x me 4x, ka 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Tāpirihia te 1 ki te 4, ka 5.
3x^{2}-6x+5-2x^{2}=6x+5
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-6x+5=6x+5
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-6x+5-6x=5
Tangohia te 6x mai i ngā taha e rua.
x^{2}-12x+5=5
Pahekotia te -6x me -6x, ka -12x.
x^{2}-12x+5-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-12x=0
Tangohia te 5 i te 5, ka 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2}
Tuhia te pūtakerua o te \left(-12\right)^{2}.
x=\frac{12±12}{2}
Ko te tauaro o -12 ko 12.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{12±12}{2} ina he tāpiri te ±. Tāpiri 12 ki te 12.
x=12
Whakawehe 24 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{12±12}{2} ina he tango te ±. Tango 12 mai i 12.
x=0
Whakawehe 0 ki te 2.
x=12 x=0
Kua oti te whārite te whakatau.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te -4x me -2x, ka -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Tāpirihia te 4 ki te 1, ka 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Pahekotia te 2x me 4x, ka 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Tāpirihia te 1 ki te 4, ka 5.
3x^{2}-6x+5-2x^{2}=6x+5
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-6x+5=6x+5
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-6x+5-6x=5
Tangohia te 6x mai i ngā taha e rua.
x^{2}-12x+5=5
Pahekotia te -6x me -6x, ka -12x.
x^{2}-12x+5-5=0
Tangohia te 5 mai i ngā taha e rua.
x^{2}-12x=0
Tangohia te 5 i te 5, ka 0.
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=36
Pūrua -6.
\left(x-6\right)^{2}=36
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=6 x-6=-6
Whakarūnātia.
x=12 x=0
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}