Whakaoti mō x
x=-110
x=-102
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+202x+10201+10\left(x+101\right)+9=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+101\right)^{2}.
x^{2}+202x+10201+10x+1010+9=0
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+101.
x^{2}+212x+10201+1010+9=0
Pahekotia te 202x me 10x, ka 212x.
x^{2}+212x+11211+9=0
Tāpirihia te 10201 ki te 1010, ka 11211.
x^{2}+212x+11220=0
Tāpirihia te 11211 ki te 9, ka 11220.
x=\frac{-212±\sqrt{212^{2}-4\times 11220}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 212 mō b, me 11220 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-212±\sqrt{44944-4\times 11220}}{2}
Pūrua 212.
x=\frac{-212±\sqrt{44944-44880}}{2}
Whakareatia -4 ki te 11220.
x=\frac{-212±\sqrt{64}}{2}
Tāpiri 44944 ki te -44880.
x=\frac{-212±8}{2}
Tuhia te pūtakerua o te 64.
x=-\frac{204}{2}
Nā, me whakaoti te whārite x=\frac{-212±8}{2} ina he tāpiri te ±. Tāpiri -212 ki te 8.
x=-102
Whakawehe -204 ki te 2.
x=-\frac{220}{2}
Nā, me whakaoti te whārite x=\frac{-212±8}{2} ina he tango te ±. Tango 8 mai i -212.
x=-110
Whakawehe -220 ki te 2.
x=-102 x=-110
Kua oti te whārite te whakatau.
x^{2}+202x+10201+10\left(x+101\right)+9=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+101\right)^{2}.
x^{2}+202x+10201+10x+1010+9=0
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+101.
x^{2}+212x+10201+1010+9=0
Pahekotia te 202x me 10x, ka 212x.
x^{2}+212x+11211+9=0
Tāpirihia te 10201 ki te 1010, ka 11211.
x^{2}+212x+11220=0
Tāpirihia te 11211 ki te 9, ka 11220.
x^{2}+212x=-11220
Tangohia te 11220 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+212x+106^{2}=-11220+106^{2}
Whakawehea te 212, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 106. Nā, tāpiria te pūrua o te 106 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+212x+11236=-11220+11236
Pūrua 106.
x^{2}+212x+11236=16
Tāpiri -11220 ki te 11236.
\left(x+106\right)^{2}=16
Tauwehea x^{2}+212x+11236. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+106\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+106=4 x+106=-4
Whakarūnātia.
x=-102 x=-110
Me tango 106 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}