Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+2x-3=0
Tangohia te 4 i te 1, ka -3.
a+b=2 ab=-3
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-3 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
x^{2}+2x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+2x-3=0
Tangohia te 4 i te 1, ka -3.
a+b=2 ab=1\left(-3\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(3x-3\right)
Tuhia anō te x^{2}+2x-3 hei \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+3=0.
x^{2}+2x+1=4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+2x-3=0
Tangohia te 4 i te 1, ka -3.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-2±\sqrt{16}}{2}
Tāpiri 4 ki te 12.
x=\frac{-2±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-2±4}{2} ina he tāpiri te ±. Tāpiri -2 ki te 4.
x=1
Whakawehe 2 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-2±4}{2} ina he tango te ±. Tango 4 mai i -2.
x=-3
Whakawehe -6 ki te 2.
x=1 x=-3
Kua oti te whārite te whakatau.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.