Aromātai
48.875
Tauwehe
\frac{17 \cdot 23}{2 ^ {3}} = 48\frac{7}{8} = 48.875
Tohaina
Kua tāruatia ki te papatopenga
\left(-2.875\right)^{2}+\left(94-90.875\right)^{2}+\left(93-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 88, ka -2.875.
8.265625+\left(94-90.875\right)^{2}+\left(93-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te -2.875 mā te pū o 2, kia riro ko 8.265625.
8.265625+3.125^{2}+\left(93-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 94, ka 3.125.
8.265625+9.765625+\left(93-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te 3.125 mā te pū o 2, kia riro ko 9.765625.
18.03125+\left(93-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tāpirihia te 8.265625 ki te 9.765625, ka 18.03125.
18.03125+2.125^{2}+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 93, ka 2.125.
18.03125+4.515625+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te 2.125 mā te pū o 2, kia riro ko 4.515625.
22.546875+\left(90-90.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tāpirihia te 18.03125 ki te 4.515625, ka 22.546875.
22.546875+\left(-0.875\right)^{2}+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 90, ka -0.875.
22.546875+0.765625+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te -0.875 mā te pū o 2, kia riro ko 0.765625.
23.3125+\left(91-90.875\right)^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tāpirihia te 22.546875 ki te 0.765625, ka 23.3125.
23.3125+0.125^{2}+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 91, ka 0.125.
23.3125+0.015625+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te 0.125 mā te pū o 2, kia riro ko 0.015625.
23.328125+\left(94-90.875\right)^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tāpirihia te 23.3125 ki te 0.015625, ka 23.328125.
23.328125+3.125^{2}+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 94, ka 3.125.
23.328125+9.765625+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tātaihia te 3.125 mā te pū o 2, kia riro ko 9.765625.
33.09375+\left(90-90.875\right)^{2}+\left(87-90.875\right)^{2}
Tāpirihia te 23.328125 ki te 9.765625, ka 33.09375.
33.09375+\left(-0.875\right)^{2}+\left(87-90.875\right)^{2}
Tangohia te 90.875 i te 90, ka -0.875.
33.09375+0.765625+\left(87-90.875\right)^{2}
Tātaihia te -0.875 mā te pū o 2, kia riro ko 0.765625.
33.859375+\left(87-90.875\right)^{2}
Tāpirihia te 33.09375 ki te 0.765625, ka 33.859375.
33.859375+\left(-3.875\right)^{2}
Tangohia te 90.875 i te 87, ka -3.875.
33.859375+15.015625
Tātaihia te -3.875 mā te pū o 2, kia riro ko 15.015625.
48.875
Tāpirihia te 33.859375 ki te 15.015625, ka 48.875.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}