Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(7+6\times 2\sqrt{22}\right)^{2}
Tauwehea te 88=2^{2}\times 22. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 22} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{22}. Tuhia te pūtakerua o te 2^{2}.
\left(7+12\sqrt{22}\right)^{2}
Whakareatia te 6 ki te 2, ka 12.
49+168\sqrt{22}+144\left(\sqrt{22}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(7+12\sqrt{22}\right)^{2}.
49+168\sqrt{22}+144\times 22
Ko te pūrua o \sqrt{22} ko 22.
49+168\sqrt{22}+3168
Whakareatia te 144 ki te 22, ka 3168.
3217+168\sqrt{22}
Tāpirihia te 49 ki te 3168, ka 3217.
\left(7+6\times 2\sqrt{22}\right)^{2}
Tauwehea te 88=2^{2}\times 22. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 22} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{22}. Tuhia te pūtakerua o te 2^{2}.
\left(7+12\sqrt{22}\right)^{2}
Whakareatia te 6 ki te 2, ka 12.
49+168\sqrt{22}+144\left(\sqrt{22}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(7+12\sqrt{22}\right)^{2}.
49+168\sqrt{22}+144\times 22
Ko te pūrua o \sqrt{22} ko 22.
49+168\sqrt{22}+3168
Whakareatia te 144 ki te 22, ka 3168.
3217+168\sqrt{22}
Tāpirihia te 49 ki te 3168, ka 3217.