Aromātai
168\sqrt{22}+3217\approx 4004.98984765
Whakaroha
168 \sqrt{22} + 3217 = 4004.98984765
Tohaina
Kua tāruatia ki te papatopenga
\left(7+6\times 2\sqrt{22}\right)^{2}
Tauwehea te 88=2^{2}\times 22. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 22} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{22}. Tuhia te pūtakerua o te 2^{2}.
\left(7+12\sqrt{22}\right)^{2}
Whakareatia te 6 ki te 2, ka 12.
49+168\sqrt{22}+144\left(\sqrt{22}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(7+12\sqrt{22}\right)^{2}.
49+168\sqrt{22}+144\times 22
Ko te pūrua o \sqrt{22} ko 22.
49+168\sqrt{22}+3168
Whakareatia te 144 ki te 22, ka 3168.
3217+168\sqrt{22}
Tāpirihia te 49 ki te 3168, ka 3217.
\left(7+6\times 2\sqrt{22}\right)^{2}
Tauwehea te 88=2^{2}\times 22. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 22} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{22}. Tuhia te pūtakerua o te 2^{2}.
\left(7+12\sqrt{22}\right)^{2}
Whakareatia te 6 ki te 2, ka 12.
49+168\sqrt{22}+144\left(\sqrt{22}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(7+12\sqrt{22}\right)^{2}.
49+168\sqrt{22}+144\times 22
Ko te pūrua o \sqrt{22} ko 22.
49+168\sqrt{22}+3168
Whakareatia te 144 ki te 22, ka 3168.
3217+168\sqrt{22}
Tāpirihia te 49 ki te 3168, ka 3217.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}